skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dilkes, Brian P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Most ferns, unlike all seed plants, are homosporous and produce sexually undifferentiated spores. Sex ratio in many homosporous species is environmentally established by the secretion of antheridiogen from female/hermaphrodite gametophytes. Nearby undetermined gametophytes perceive antheridiogen, which induces male development. In the fern Ceratopteris richardii (Ceratopteris), hermaphroditic (her) mutants develop as hermaphrodites even in the presence of antheridiogen. Modern sequencing and genomic tools make the molecular identification of mutants in the 11-Gbp genome of this fern possible. We mapped 2 linked mutants, her7-14 and her7-19, to the same 16-Mbp interval on chromosome 29 of the Ceratopteris genome. An ortholog of the receptor kinase gene BRASSINOSTEROID INSENSITIVE 1 (BRI1) within this interval encoded a deletion mutation in her7-14 and a missense mutation in her7-19. Three other linked her mutants encoded missense mutations in the same gene, which we name HER7. Consistent with a function as a receptor kinase, HER7-GFP fusion protein localized to the plasma membrane and cytoplasm. Analysis of gene expression showed that brassinosteroid biosynthesis was upregulated in hermaphrodites compared with male gametophytes. Our work demonstrates that HER7 is required for sex determination in Ceratopteris and opens avenues for studying the evolution of antheridiogen systems. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Identifying the genetic basis of local adaptation and fitness trade-offs across environments is a central goal of evolutionary biology. Cold acclimation is an adaptive plastic response for surviving seasonal freezing, and costs of acclimation may be a general mechanism for fitness trade-offs across environments in temperate zone species. Starting with locally adapted ecotypes ofArabidopsis thalianafrom Italy and Sweden, we examined the fitness consequences of a naturally occurring functional polymorphism inCBF2. This gene encodes a transcription factor that is a major regulator of cold-acclimated freezing tolerance and resides within a locus responsible for a genetic trade-off for long-term mean fitness. We estimated the consequences of alternate genotypes ofCBF2on 5-y mean fitness and fitness components at the native field sites by comparing near-isogenic lines with alternate genotypes ofCBF2to their genetic background ecotypes. The effects ofCBF2were validated at the nucleotide level using gene-edited lines in the native genetic backgrounds grown in simulated parental environments. The foreignCBF2genotype in the local genetic background reduced long-term mean fitness in Sweden by more than 10%, primarily via effects on survival. In Italy, fitness was reduced by more than 20%, primarily via effects on fecundity. At both sites, the effects were temporally variable and much stronger in some years. The gene-edited lines confirmed thatCBF2encodes the causal variant underlying this genetic trade-off. Additionally, we demonstrated a substantial fitness cost of cold acclimation, which has broad implications for potential maladaptive responses to climate change. 
    more » « less
  3. Abstract The Arabidopsis (Arabidopsis thaliana) BYPASS1 (BPS1) gene encodes a protein with no functionally characterized domains, and loss-of-function mutants (e.g. bps1-2 in Col-0) present a severe growth arrest phenotype that is evoked by a root-derived graft-transmissible small molecule that we call dalekin. The root-to-shoot nature of dalekin signaling suggests it could be an endogenous signaling molecule. Here, we report a natural variant screen that allowed us to identify enhancers and suppressors of the bps1-2 mutant phenotype (in Col-0). We identified a strong semi-dominant suppressor in the Apost-1 accession that largely restored shoot development in bps1 and yet continued to overproduce dalekin. Using bulked segregant analysis and allele-specific transgenic complementation, we showed that the suppressor is the Apost-1 allele of a BPS1 paralog, BYPASS2 (BPS2). BPS2 is one of four members of the BPS gene family in Arabidopsis, and phylogenetic analysis demonstrated that the BPS family is conserved in land plants and the four Arabidopsis paralogs are retained duplicates from whole genome duplications. The strong conservation of BPS1 and paralogous proteins throughout land plants, and the similar functions of paralogs in Arabidopsis, suggests that dalekin signaling might be retained across land plants. 
    more » « less
  4. The origins of maize were the topic of vigorous debate for nearly a century, but neither the current genetic model nor earlier archaeological models account for the totality of available data, and recent work has highlighted the potential contribution of a wild relative,Zea maysssp.mexicana. Our population genetic analysis reveals that the origin of modern maize can be traced to an admixture between ancient maize andZea maysssp.mexicanain the highlands of Mexico some 4000 years after domestication began. We show that variation in admixture is a key component of maize diversity, both at individual loci and for additive genetic variation underlying agronomic traits. Our results clarify the origin of modern maize and raise new questions about the anthropogenic mechanisms underlying dispersal throughout the Americas. 
    more » « less
  5. Plants typically orient their organs with respect to the Earth’s gravity field by a dynamic process called gravitropism. To discover conserved genetic elements affecting seedling root gravitropism, we measured the process in a set of Zea mays (maize) recombinant inbred lines with machine vision and compared the results with those obtained in a similar study of Arabidopsis thaliana . Each of the several quantitative trait loci that we mapped in both species spanned many hundreds of genes, too many to test individually for causality. We reasoned that orthologous genes may be responsible for natural variation in monocot and dicot root gravitropism. If so, pairs of orthologous genes affecting gravitropism may be present within the maize and Arabidopsis QTL intervals. A reciprocal comparison of sequences within the QTL intervals identified seven pairs of such one-to-one orthologs. Analysis of knockout mutants demonstrated a role in gravitropism for four of the seven: CCT2 functions in phosphatidylcholine biosynthesis, ATG5 functions in membrane remodeling during autophagy, UGP2 produces the substrate for cellulose and callose polymer extension, and FAMA is a transcription factor. Automated phenotyping enabled this discovery of four naturally varying components of a conserved process (gravitropism) by making it feasible to conduct the same large-scale experiment in two species. 
    more » « less